
1.  Introduction
The El Niño-Southern Oscillation (ENSO) is the most prominent interannual climate variability mode and is 
characterized by fluctuations in the sea surface temperature (SST) and atmospheric pressure in the Pacific Ocean 
(Bjerknes, 1969; Timmermann et al., 2018). Researches have highlighted that there are substantial differences 
in SST meridional structure across different regions during the El Niño event (Feng et  al.,  2019; McGregor 
et al., 2012; Yu et al., 2022). During the development and decay stages of El Niño, SST anomalies occur globally. 
El Niño is accompanied by positive SST anomalies in the equatorial central-eastern Pacific Ocean, which can 
shift tropical convections and excite the Indian Ocean dipole mode, as well as SST fluctuations in the tropical 
Atlantic (Ham et al., 2021; McCreary et al., 2005). As El Niño decays, it triggers atmospheric teleconnections 
that lead to significantly positive SST anomalies in the northern tropical Atlantic and Indian Oceans (Jiang & 
Li, 2019; Schott et al., 2009). Additionally, during the decay of El Niño, the westerly winds on the sides of the 
equatorial tropical Pacific weaken and decay unevenly, causing SST to display different anomalous signs on the 
flanks of the equator over the tropical Pacific (Song et al., 2022; Stuecker et al., 2015). Consequently, large differ-
ences in the associated SST anomalies are observed during different phases of ENSO.

The Hadley Circulation (HC) is a significant component of the mean meridional circulation (Hadley, 1735) that 
strongly regulates climate systems. The interannual variability of the HC is classified into two dominant modes: 
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an equatorial asymmetric mode and an equatorial quasi-symmetric mode. Previous studies have interpreted that 
the equatorial quasi-symmetric mode of the HC is connected to El Niño (e.g., Feng & Li, 2013; Ma & Li, 2008; 
Oort & Yienger, 1996). Meanwhile, it has been illustrated that the occurrence of El Niño events could contribute 
to the asymmetric mode of the HC (e.g., Feng et al., 2019; Guo & Tan, 2018a; Zhang & Wang, 2013). The equa-
torial asymmetric and quasi-symmetric modes are linearly independent; however, both are related to the ENSO. 
This indicates that the influences of El Niño on the HC are still inconclusive.

On the other hand, studies have demonstrated that the spatial distribution of the HC is sensitive about under-
lying thermal structures (e.g., Hu et al., 2018; Nguyen et al., 2013; Seager et al., 2003; Zaplotnik et al., 2022). 
The anomalous distribution of the meridional circulation is notably influenced by the location and distribution 
of the heating profile, including its deviation from the equator or its position along the equator (e.g., Bordoni 
& Schneider, 2010; Fang & Tung, 1999; Numaguti, 1995). When an El Niño event develops or decays, it is 
associated with SST anomalies across the tropical oceans (Ham et al., 2021; McCreary et al., 2005; Stuecker 
et al., 2015). Such anomalous SSTs can alter the spatial structure of SST, which further impacts HC variability 
by modulating air–sea boundary layer dynamics and atmospheric thermal structure (Freitas et al., 2016; Oort & 
Yienger, 1996). Studies by Feng et al. (2016) and Hoskins et al. (2020) indicate that nonuniform (uniform) vari-
ations of SST can result in a varied meridional gradient of SST, potentially influencing the spatial distribution 
of the HC.

These findings suggest that the variation in the HC is dependent on underlying thermal structures, which are 
subject to variation along with the occurrence of El Niño. Previous research has emphasized the significant 
impact of El Niño on tropical SST in different phases. However, the anomalous characteristics of SST in different 
phases and its impact on the HC remain unclear. Moreover, previous studies on the relationship between El Niño 
and the HC have mainly been performed from the perspective of HC variability, and less attention has been given 
to the impact of different stages of El Niño events on the HC. Therefore, the present work aims to investigate the 
influences of El Niño on the HC from the El Niño cycle perspective. In Section 2, the materials and methods are 
described. Section 3 presents the asymmetrical distribution of the HC anomalies during El Niño cycle, along with 
an exploration of the influence mechanism of SST anomalies on the HC variation. Finally, Section 4 comprises 
the discussion and conclusion.

2.  Materials and Methods
We utilize the mass stream function (MSF) (Oort & Yienger, 1996) to capture the spatial structure of the HC 
based on four atmospheric reanalysis datasets from 1980 to 2018, namely, the Modern-Era Retrospective analysis 
for Research and Applications Version 2 (MERRA2) (Gelaro et al., 2017), National Centers for Environmental 
Prediction (NCEP)-Department of Energy Reanalysis 2 (NCEP2) (Kanamitsu et  al.,  2002), Japanese 55-year 
Reanalysis (JRA55) (Kobayashi et  al.,  2015), and European Centre for Medium-Range Weather Forecasts 
Era-Interim (ERAI) (Dee et al., 2011). Thirteen Atmospheric Model Intercomparison Project (AMIP) models 
(Table S1 in Supporting Information S1) from the Coupled Model Intercomparison Project6 (CMIP6) are used. 
The ensemble average over 13 models is derived by interpolating them into the same horizontal resolution of 
2.5°  ×  2.5°. Three oceanic fields, including the National Oceanic and Atmospheric Administration (NOAA) 
Extended Reconstructed SST version 5 (ERSST5) (Huang et al., 2017), the Met Office Hadley Centre Sea Ice and 
SST data set (HadISST) (Rayner et al., 2003), and the Centennial in situ Observation-Based Estimates (COBE) 
SST version 1 (COBESST1) (Hirahara et al., 2014), are applied to estimate SST variations. According to the 
Climate Prediction Center, El Niño development and decay years are defined with a +0.5-threshold using the 
Niño 3.4 region's SST anomalies averaged over a three-month running period based on the Ocean Niño Index. 
If the criterion is satisfied for at least three consecutive seasons starting from autumn within a natural year, we 
consider that natural year as an El Niño development year (1982, 1986, 1991, 1994, 1997, 2002, 2004, 2006, 
2009, and 2014). If there are three consecutive months with an anomaly index below 0.5 starting from summer 
within a natural year and the previous year was an El Niño year, we consider that natural year as an El Niño decay 
year (1983, 1988, 1992, 1995, 1998, 2003, 2005, 2007, 2010, and 2016). The selected years are consistent with 
those in previous studies (Li et al., 2020; Song et al., 2019; Wang & Zhang, 2002). It is worth mentioning that 
the events from 1986 to 1988 and 2014 to 2016 are treated as intense El Niño events (Allan et al., 2019; DiNezio 
et al., 2019). Therefore, 1986 and 2014 are categorized as development years, while 1988 and 2016 are classi-
fied as decay years. The MSF and SST in each calendar year are analyzed. When analyzing the modeled results, 

 19448007, 2023, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
103861 by O

cean U
niversity O

f C
hina, W

iley O
nline L

ibrary on [07/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Geophysical Research Letters

FENG ET AL.

10.1029/2023GL103861

3 of 9

the years for the development and decay of El Niño do not include 2014 and 2016, respectively. The anomalies 
for MSF and SST were derived by calculating the composite value during development or decay stages and 
subtracting the climatic value from 1980 to 2018. A two-sided Student's t-test was employed to test the statistical 
significance.

3.  Results
The spatial distribution of the climatological HC and its anomalous distribution during El Niño development and 
decay years are shown in Figure 1. The four datasets present a consistent spatial feature of the climatological HC 
(shadings in Figure 1), with an ascending branch at approximately 7°N and two descending branches at approx-
imately 30° in the two hemispheres, presenting as an equatorial quasi-symmetric pattern. Additionally, the two 
Ferrell cells are observed north of 30°N and south of 30°S, indicating the transfer of angular momentum from the 
tropics to the polar regions (Hoskins & Yang, 2021). These findings highlight the importance of meridional flow 
and its impact on atmospheric circulation. In terms of the extent and intensity of the HC, the cells in the Southern 
Hemisphere (SH) perform more robustly than those in the Northern Hemisphere (NH), with an ∼38° extent in 
the SH compared to an ∼30° extent in the NH. Additionally, the equatorward location of the SH HC is much 
closer to the surface than that of the NH HC, indicating that there is deep penetration of the SH HC into the NH.

Moreover, the anomalous HC during El Niño development years (left panel of Figure 1), exhibits significant 
negative anomalies in the SH and opposite anomalies in the NH, displaying an equatorial symmetric pattern that 
aligns with the second mode of the HC anomaly discovered by Guo and Tan (2018b) and Sun and Zhou (2014). 

Figure 1.  Spatial distribution of the climatological HC (shading, ×10 10 kg s −1) over the entire period and its anomalies (contour lines) during (left panel) El Niño 
development and (right panel) decay years based on (a), (e) MERRA2, (b), (f) NCEP2, (c), (g) MERRA2, and (d), (h) ERAI. The green line is the zero-value of climatic 
value. The solid (dotted) contour line is positive (negative), the contour interval is 0.2 × 10 10 kg s −1, and the zero line is thickened. The dark spot represents significance 
at the 0.05 level.
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Notably, the zero-value position of the HC anomaly near the equator basically coincides with that of the upward 
climatological HC. Moreover, two inverse anomaly distributions on either flank of the ascending motion of the 
climatological HC could strengthen the meridional circulation, consequently leading to greater transport of water 
vapor flux from the tropics to the subtropics.

However, the HC anomaly exhibits a different spatial pattern during El Niño decay years (right panel in Figure 1), 
presenting a prominent single cell with positive anomalies across the equator. This asymmetric mode ranges from 
10°S to 10°N, which is consistent with the first mode of HC variability (Feng et al., 2019). The distribution indi-
cates that positive values are strengthened from the upward branch of the climatological HC to the right subsid-
ing branch of the HC anomaly, while negative values of the climatological HC in the area of positive anomalies 
are weakened. This suggests contrasting impacts on the Hadley cells of the NH and SH, where the NH cell is 
enhanced while the SH cell is diminished. Additionally, the different distribution of HC anomalies at different 
stages of El Niño have been manifested from other three indictors (velocity potential at 200 hPa, vertical shear 
of meridional wind (200–850 hPa) and vertical velocity, figures not shown). All the three indicators indicate that 
there is a significant upward movement with a southward shift and the vertical convection is strengthened during 
the decay stage. Consequently, this southward shift of the ascending motion would result in significantly less 
heat  transport to the subtropics. The results show that El Niño has varying effects on the HC depending on its 
phase, leading to different conclusions in previous research.

Previous studies have shown that the HC varies depending on underlying thermal conditions, acting as a 
thermal-driving meridional circulation (Xie et al., 2022; Zaplotnik et al., 2022). The simulated climatological 
HC and the associated anomalies during El Niño development and decay years from 13 AMIP models (Figures 
S1 and S2 in Supporting Information S1) are consistent with those from reanalyses. This consistency is reflected 
in the strong correlation and standard deviation ratio, as depicted in Figures S3 and S4 in Supporting Informa-
tion S1. Therefore, the 13 models support the hypothesis that anomalous SSTs during different stages of El Niño 
affect HC anomalies. Figure 2 shows the ensemble mean results during both stages. The ensemble averaged 
anomaly agrees well with the observed anomaly (red plus symbol from Figure S4 in Supporting Information S1), 
exhibiting spatial correlation coefficients of 0.88 and 0.90 during the development and decay stages, respec-
tively. Although there is a subtle difference in the altitude position of the extremum, this difference does not 
affect overall consistency. Moreover, the simulations indicate noteworthy anomalies near the subtropical region 
(40°) in both hemispheres, which are absent in the reanalysis. This implies the occurrence of notable air–sea 
interactions (Emanuel et al., 1994; W Wu et al., 2011) in this region that cannot be captured by a simple ocean 
temperature-driven atmospheric circulation model.

Based on the reanalyses and simulations, it is evident that there is a notable contrast in the spatial distribution 
of HC anomalies between the development and decay years of El Niño. This disparity implies that the HC is 

Figure 2.  As in Figure 1, but for the climatological HC and its anomalies under the ensemble mean from 13 AMIP models.
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potentially influenced by distinct SST anomalies during each stage. Therefore, the spatial features of SST during 
the two stages are investigated.

Figure 3 depicts the spatial distribution of SST anomalies and their zonal-mean profiles during the development 
and decay stages. During development (Figures 3a–3c), significantly positive anomalies occur in the central and 
eastern Pacific Ocean, while evident negative anomalies are observed in the western Indo-Pacific Warm Pool, and 
slight negative anomalies appear in the tropical Atlantic Ocean. This distribution is attributed to the weakening of 
trade winds in the SH, which leads to a concurrent weakening of equatorial upwelling (Bjerknes, 1969). During 
decay, the SST anomalies exhibit a distinct spatial pattern (Figures 3d–3f). Notably, obvious positive anomalies 
appear in the tropical Indian Ocean and Atlantic Ocean, with the maximum in the southeastern Indo-Pacific 
Warm Pool, due to teleconnections between the ENSO and other tropical seas, as explained by Czaja et al. (2002), 
Kim et al. (2012) and R Wu et al. (2020). Additionally, opposite anomalies occur on the flanks of the equatorial 
central and eastern Pacific Ocean, with a positive feature south of the equator and a negative feature north of the 
equator, indicating an asymmetric decay rate of SST consistent with that reported in previous studies (McGregor 
et al., 2012; Song et al., 2022). This asymmetrical decay rate may be caused by the discordant zonal winds that 

Figure 3.  Composite SST anomalies during El Niño development (left panel) and decay years (right panel) based on the (a), (d) ERSST5, (b), (e) HadISST, and (c), (f) 
COBESST1 datasets. The dots in (a–f) represent significance at the 0.05 level. (g) The zonal-mean SST anomalies during El Niño development years. (h) Same as (g) 
but during El Niño decay years. The dark spots in (g and h) represent significance at the 0.1 level.
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dominate the flanks of the equatorial Pacific Ocean. During decay, the zonal wind in the northern region of the 
equatorial Pacific Ocean is reigned by easterly winds, which induces equatorial ocean waves and causes ther-
mocline changes, resulting in negative SST anomalies. Meanwhile, in the southern area of the equatorial Pacific 
Ocean, there is still a southward shift of the surface westerly, which was previously observed by Vecchi and 
Harrison (2006) and Sun and Zhou (2014). This shift causes shoaling of the eastern Pacific thermocline, result-
ing in a reduction in the overlying SST anomalies (Harrison & Vecchi, 1999). Consequently, the spatial features 
of SST anomalies exhibit dissimilarities across various stages of El Niño. The distinct SST anomalies observed 
during the two stages may correspond to differing SST meridional configurations that significantly influence the 
spatial distribution of the HC.

As shown in Figure 3g, the zonal-mean profile of SST anomalies during development displays an equatorial 
symmetric distribution with a maximum value of approximately 0.21°C near the equator. It has been reported 
that the SST field determines the location of low-level convergence (Schneider, 1977). Thus, the noteworthy 
equatorial symmetric SST anomalies would induce symmetrical anomalous meridional circulation, characterized 
by intensified upward movement in the vicinity of the equator. Meanwhile, an equatorial asymmetric SST profile 
is distributed during decay with the maximum at 10°S (Figure 3h). Oort and Rasmusson (1970) noted that even 
minor equatorial imbalances in the underlying surface temperature can markedly affect the spatial arrangement 
of the mean meridional circulation. This indicates that a shift of the thermal equator from the geodetic equator 
by several degrees of latitude can trigger asymmetrical equatorial circulation. Therefore, when the maximum 
positive anomaly shifts to 10°S, it may stimulate an equatorial asymmetric circulation anomaly (Figure 1). Essen-
tially, we can assume that the meridional structures of SST anomalies linked with the development and decay 
stages might facilitate the emergence of the observed HC anomaly.

To further validate our assumption, we employ the Lindzen–Nigam model (Lindzen & Nigam, 1987) to provide 
theoretical verification. This model investigates the relationship between underlying thermal conditions and 
low-level atmospheric circulation in the tropics. The linearization formula is as follows:

−�� ′ = −
�

�cos�

[

(

2 − ��� + ���0

)�ℎ′

��
− ��0

2

(

1 −
2�
3

)

���
′

��

]

− �� ′� (1)

𝑓𝑓𝑓𝑓 ′
= −

𝑔𝑔

𝛼𝛼

[

(

2 − 𝑛𝑛𝑇𝑇𝑠𝑠 + 𝑛𝑛𝑛𝑛𝑛𝑛0

)

𝜕𝜕𝜕′

𝜕𝜕𝜕𝜕
−

𝑛𝑛𝑛𝑛0

2

(

1 −
2𝛾𝛾

3

)

𝜕𝜕𝜕𝜕𝑠𝑠
′

𝜕𝜕𝜕𝜕
−

nh′

2

𝜕𝜕𝑇𝑇𝑠𝑠

𝜕𝜕𝜕𝜕

]

− 𝜖𝜖𝜖𝜖 ′� (2)

where V′ and U′ are the derivatives of the meridional and zonal velocities with height, respectively. And f is the 
Coriolis parameter. g is gravity acceleration. α is the radius of the earth. n is the air expansion coefficient. H0 
denotes the boundary layer’ height. Ts represents the SST, with an eddy component of 𝐴𝐴 𝐴𝐴𝑠𝑠

′ and a mean state of 𝐴𝐴 Ts . 
λ and θ are the longitude and latitude, respectively. h′ is the horizontally inhomogeneous part, which is assumed 
to be much lower than H0. γ is a constant. 𝜖 = Cd|V|c/H0 is some constant typical wind speed in the trade cumulus 
boundary layer.
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After averaging all the variables over the zonal region, the terms on the right-hand side of Equation 3 with respect 
to longitude become zero. Lindzen and Nigam (1987) noted that the values of h′ and 𝐴𝐴 𝐴𝐴𝑠𝑠

′ are very small, which 
allows us to assume that the gradient variation in the zonal direction is equal to 0. As a result, Equation 3 can be 
simplified as follows:
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where f, ϵ, n, g, h′, and α can be treated as constants that do not alter the positive or negative transformation of 
the equation. Therefore, the positive correlation between meridional wind and meridional gradient of zonal-mean 
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SST indicates that southerlies (northerlies) correspond to positive (negative) 
meridional SST gradients. Consequently, the zonal-mean SST meridional 
gradient's position shifts from a positive to a negative value, attains zero at 
the convergence location, and coincides with the ascending branch of the  HC.

Consequently, the meridional gradient of the zonal-mean SST anomalies 
during the two stages of El Niño are examined. During development, the 
location where the meridional gradient equals zero is found to be around 
the equator (Figure 4a). In contrast, the location where the gradient is zero 
moves to approximately 10°S during decay (Figure 4b). This indicates that 
the reverse distribution of the HC anomaly is caused by the accompanying 
meridional gradient of SST, providing evidence that the different SST merid-
ional gradients during the two stages determine the formation of the associ-
ated HC by regulating the location of the ascent.

4.  Conclusion and Discussion
In this study, we investigate the effects of El Niño on the HC with a focus on its different stages. During devel-
opment, an equatorial symmetric HC anomaly is observed, whereas during decay, an equatorial asymmetric HC 
anomaly with an anomalous ascent located at ∼10°S is observed. Meanwhile, the highly correlated simulation 
results from the AMIP models exhibit similar symmetric and asymmetric anomalous spatial structures, indicating 
that the variation in the HC anomaly is primarily associated with the thermal conditions of the underlying surface 
during distinct El Niño stages.

The SST datasets reveal that during development, the zonal-mean SST anomalies exhibit an equatorial symmetric 
structure, which stimulates an equatorially symmetric anomalous meridional circulation by adjusting the position 
of low-level convergence. However, during decay, the zonal-mean SST anomalies exhibit an asymmetric structure 
with a positive maximum located at 10°S corresponding with an anomalous ascent located to the south of the 
equator. This suggests that the distinct anomalous meridional circulation accompanied by different El Niño stages 
is mainly due to their parallel underlying SST meridional distribution. This point is further verified by theoretical 
deduction. Based on the theoretical model relating the underlying thermal force and low-level winds proposed 
by Lindzen and Nigam  (1987), a simplified equation is derived, demonstrating that the meridional gradient 
of SST influence low-level convergence. This provides a theoretical explanation for why different HC anoma-
lies are observed along with El Niño events, providing evidence that fluctuations in the meridional gradient of 
SST anomalies can stimulate the spatial distribution of meridional circulation. Therefore, our results explain the 
controversy regarding the impacts of El Niño on the HC anomaly. This is mainly because the associated SST 
anomalies during El Niño's development (decay) stages exhibit symmetric (asymmetric) structures resulting in 
symmetric (asymmetric) HC anomalies.

Importantly, there is a tripole mode over the subtropics of the North Pacific and a quadrupole mode over the 
South Pacific. These anomalous modes may also impact the HC, and analysis will be carried out in future 
work. Additionally, significant asymmetry in the decay rate between El Niño and La Niña events is highlighted 
(Hayashi et al., 2020; McGregor et al., 2012; Song et al., 2022). Following the mature phase of El Niño events, 
they usually progress into La Niña events in the following June-July period. According to studies by Okumura 
and Deser (2010) and Chen and Li (2021), the negative SST anomalies linked to La Niña events can last for over 
a year after peaking, they often regain strength in the subsequent winter season, which indicates that distinct 
spatial structures of SST anomalies exist during various stages of La Niña compared to El Niño. Therefore, it 
is worth further studying the impact of the different stages of La Niña on the HC. Additionally, SST exhibits 
different decay rates under different types of El Niño, which means SST exhibits different spatial anomalous 
signals over tropical region (Chen & Li, 2021). Once inconsistent anomalous signals occur, it will cause changes 
in the meridional structure of SST, and further trigger different HC anomalies. It is worth further studying the 
impact of distinct types of El Niño on the HC. Meanwhile, the anomalous HC at mid-latitudes has different signs 
depending on the phase of El Niño (Figure 1). This implies that the phase transition of El Niño can affect the 
poleward position of the HC, and it would be interesting to further detect the effects of El Niño's different stages 
on the HC boundary. Overall, our findings contribute to understanding why the impacts of the ENSO on the 
HC differed in previous studies and provide an explanation for the different effects. This result has significant 

Figure 4.  Meridional gradient distribution of zonal-mean SST anomalies with 
3-point smoothing during El Niño (a) development and (b) decay years. Solid, 
dotted and dashed lines are based on ERSST5, HadISST, and COBESST1, 
respectively.
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implications for future assessments and modeling of the climate impacts of ENSO and HC changes because both 
involve large-scale air–sea interactions.

Data Availability Statement
The atmospheric reanalyses including MERR2, NCEP2, JRA55, ERAI are available at https://disc.gsfc.nasa.gov/
datasets?project=MERRA-2, https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html, https://rda.ucar.edu/data-
sets/ds628.1/dataaccess/, and https://apps.ecmwf.int/datasets/data/interim-full-mnth/levtype=pl/, respectively. The 
oceanic reanalyses including ERSST5, HadISST and COBESST1 are available at https://psl.noaa.gov/data/gridded/
data.noaa.ersst.v5.html, https://climatedataguide.ucar.edu/climate-data/sst-data-hadisst-v11, and https://psl.noaa.gov/
data/gridded/data.cobe.html, respectively. The AMIP model's output from CMIP6 is available at https://esgf-node.llnl.
gov/search/cmip6/.
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